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Rigorous sum rules for negative moments of the discontinuity across the left-hand cut of the wm P wave are
derived and analyzed. A model by Dilley wherein the p resonance emerges from elastic N/D equations is
shown to be severely inconsistent with these sum rules. Dilley’s method for selecting the input left cut is ]
analyzed and shown to be strongly biased in favor of generating a p. Because of-this bias, together with the
aforementioned violation of sum rules, Dilley’s model does not comprise evidence that the p is generated by
forces in the w7 channel. Numerous successes of the quark model suggest otherwise.

I. INTRODUCTION AND SUMMARY

In an earlier Letter! (hereafter referred to as
T1), rigorous sum rules were derived for the
second and all higher negative moments of the
discontinuity across the left cut of the 77 P wave.
These moments were expressed strictly in terms
of physical-region absorptive parts. Subsequent
to the publication of T1, Dilley published an
elastic N/D model® which generates a p in good
agreement with experiment. This model was
acknowledged to violate the sum rules of T1, but
the violations were alleged to be minor and ac-
ceptable.

The dynamical origin of the p resonance is an
issue of major importance, so we analyze here the
model of Dilley. We shall find that his method for
selecting a left cut is strongly biased in favor of
generating a p. We shall also find the distant left
cut of Dilley’s model to be severely inconsistent
with rigorous sum rules. The aformentionedbias,
together with the violation of sum rules, leads us
to conclude that Dilley’s work should not be re-
garded as evidence that the p is generated by
forces in the 77 channel. This conclusion is of
course supported, albeit indirectly, by numerous
successes of the quark model.®

To facilitate our analysis, we shall cast the sum
rules of T1 into a new form which is better suited
for studying the distant left cut. We shall also con-
sider in some detail the general mechanism of
resonance generation, before proceeding to our
critique of Dilley’s model.

II. DERIVATION OF SUM RULES

We denote the 77 elastic amplitudes by
A’ (v, cos6), wherel denotes the (direct) s-channel
isospin, and v= [ [2=% (s - 4m,?). We use units
wherein m,=7%=c =1, and our normalization is
such that the partial waves may be written as

ADN(Y)=54(1+1/v)V2[ 1 - nf exp(2i6,)]

b

where 7! denotes the elasticity (0 <n! <1), and
the phase shifts 8/, are real. Bose symmetry im-
plies that A"’ vanishes when (7 +1) is odd.

We shall denote the combination of amplitudes
with isospin 7 in the ¢ channel by

T (v, cosf) = Z B AT (v, cosé),
=

where B=f"' denotes the s-¢ crossing matrix. The
elements we shall need here are §8,;= 3, z , and
-2 for7=0, 1, and 2, respectively.
The Froissart-Gribov representation implies
for odd ! that
A(”l(v)=-—4—f
TV Jy

©

du'Q,<1+2” ”)

14

xImTl(u',usz,-l), 1)
v

which is valid for Rev<0. Although one could base
sum rules on a comparison of Eq. (1) for /=1 with
the standard relation

A(l)l(y)=l;<[;l dv’ + fowdy,> ImA 1 (p) . @

v (v = v)

the resulting sum rules would all involve ImT*
away from the forward direction. The prm Regge
residue function is now known* for —1.0 GeV2<t
<0.1 GeV?, so such sum rules could readily be
evaluated. When T1 was written, however, the
prm residue was not known for £#0, so an alterna-
tive procedure was followed. Since Dilley com-
pared his model with the sum rules of T1, we fol-
low here the procedure of T1, and write the P
wave as

AV )= 3[AN(v,1) - AY(v)], (3)

where

Alv) = S: @I+ 1)AD).
I=3

The forward amplitude A'(v, 1) satisfies a well-
known dispersion relation,® and A*(v) can be ob-
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tained from Eq. (1) together with the observations
that

Q(Z)——zf der 21D
-1 , ImA (”1(11’) 1 © dv’ ,
f v v =v) Y, ) (v 1) [ImTl(V’1)+

0

_f“’d , ImA W1 (p7)
o V(v —v)

1 ° ’ 1 v
‘5f av [(V’+ I CETES YA <1+2
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i (2L+1)Py(z)=0(z = 1) = 6(z +1) = 3P, (2) .

1=3
odd

Thus Eqs. (2) and (3) lead to

v+1)(2v'+1)
V(v = v)

+1>}ImT1<u' 1+2~:—1>

ImA (v, 1)]

4)

Since the left-hand side of Eq. (4) is manifestly analytic for [v|<1, both sides can be expanded as a
power series in v, with equal coefficients. In this way, we obtain sum rules of the form

s 1 ad
f dvlm—AV"—(V): f dv B,(v)
-0 0

5)

for all integers n > 2, where the functions B,(v) are defined implicitly by Eqs. (4) and (5). Note that /f‘(v)
vanishes like »* as v—0, so that B, and B, are independent of Im7T* away from the forward direction; this

was the original reason for using Eq. (3).

For —-9<v<-1, analyticity and crossing symmetry imply®

2 (vt V41| & - v+l
(11 — (DI
ImA©\ () =2 j; dv'P, (1+2 . > Zm By 3 (21 + DImA DI (w)P, <1+2 > 6)

I=0

Unfortunately, the Legendre series on the right-
hand side of Eq. (6) diverges over part of the
range of integration when v<-9.5 It is this diver-
gence which had previously prevented one from
obtaining reliable information about ImA ! for
v<-9,

In T1, the sum rules were written in the form
of Eq. (5) (up to overall multiplicative constants).
The functions B, were given explicitly for n=2, 3,
and 4. Upon using Eq. (6) for the interval
-9<v<-1, one finds that S- and P-wave contri-
butions dominate both sides of Eq. (5), and that
major cancellations occur between the two sides.
[These cancellations are the reason why Dilley’s
model almost satisfies the sum rules (5).] These
cancellations are no accident: it is readily proven
that if one were to use Eq. (6) over the entire left
cut, then any ImA 7 would make identical contri-
butions to both sides of Eq. (5), for allz> (I +2).”

Since our goal is to obtain information about
ImA @ for v<-9, let us use Eq. (6) for
-9<v<-1, and cast the sum rules into the form

I-gdy ImA (l)l(v)

V"

=Y Bir f: fs dv F{P(v)ImA Di(v)

1=0 0

+ f dvG,(v), )

r

which defines émplicitly the functions F{" and G,
Explicit expressions are given in Appendix A for
=0, 1, and 2, n=2, 3, 4, and 5. In practice,
the ImA V7 with 7 23 are negligible for 0<v<8
(E., n <840 MeV), so that one has no need for the
F{P with 1>3.8

The information contained in the sum rules (7)
is quite substantial, since

mA(l)l(Vl)

7 o
Srca s

for |v|<9. Thus the contribution of ImA®* from
—©<v<-9 to AW throughout the circle |v|<9 is
given by the sum rules (7), strictly in terms of
physical-region absorptive parts.®

1) ’
ImA 1 l(V) ®)

III. EVALUATION OF SUM RULES

In our evaluation of the right-hand sides of the
sum rules (7), we divide the physical region into
two parts: the region below 1.9 GeV, where ex-
perimental phase shifts are available, and the
“high-energy” region above 1.9 GeV.

Inspection of the functions G, given in Appendix
A reveals that knowledge of ImA!, ImT*, and
ImA® is required. Above 1.9 GeV, we use the
fact that
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TABLE I. R, denotes contribution to right-hand side
of sum rule (7) for n=k. The subscripts HE denote the
high-energy region above 1.9 GeV. Input absorptive
parts are described in Appendix B, together with their
uncertainties. The four “total” values in the bottom row
of this table are estimated to be uncertain by 29%, 33%,
18%, and 15%, respectively.

10%R, 10°R; 10°R, 10°R;
So 0.46 -0.53 0.49 -0.45
S -0.43 0.29 -0.21 0.16
P -0.89 0.74 -1.91 2.14
Dy 0.96 -0.45 0.19 -0.19
Dy -0.03 0.02 -0.01 0.01
F 0.30 0.25 0.03 0.02
ImTYs 0.07 0.63 0.00 0.01
ImThg 1.78 0.00 0.01 —0.01
ImA{R! —-0.54 ~0.06 —0.01 0.00
Total 1.68 0.89 ~1.42 1.69

2
Al=3"B, T,
I=0

and use Regge theory for the Im7¥. Details of the
absorptive parts used throughout this paper are
given in Appendix B.

In Table I, the various contributions to the
right-hand side of Eq. (7) are itemized for n=2, 3,
4, and 5. Observe that, for #=2, the sum rule is
dominated by the contribution of InTh;. Forn=3,
several contributions are of comparable size. For
n=4 and 5 (and all higher n), however, the sum
rule is strongly dominated by low-energy contri-
butions, primarily the p (P-wave) contribution.
Hence for all n=>4, the right-hand side of Eq. (7)
can be evaluated with nearly the same precision
as one’s knowledge of the p resonance parameters.

There is no mystery in the fact that high-order
sum rules are dominated by low-energy absorptive
parts. The functions G,(v) in Eq. (7) are such that
the coefficient of each amplitude tends to zero for
large v at least as rapidly as v™". In practice, one
finds that every sum rule with »n = 4 is strongly
dominated by contributions from below 1 GeV,
primarily the p contribution.

IV. DYNAMICS OF RESONANCE GENERATION

To understand what type of left cut would gener-
ate a resonance, it is useful to regard A% as a
sum of the two parts

AV =A (V) +AR V),

where A, and A denote the contributions from the
left and right cuts, respectively, in the partial-
wave dispersion relation (2).

The physical region corresponds to v real and
positive, where unitarity implies that

[ReA ™| <iml(1+1/v)H/2, (9)
Now suppose that
AL(V) >z (1+ 1/v)H/2 (10)

over some interval of positive v. The unitarity
constraint (9) then requires that A, be negative.
Since ImA ™1 is positive for v>0, it follows that
Ag(v) receives a negative contribution from the
interval 0<v’<v, and a positive contribution from
the interval ¥ <v’ <, In order for the inequality
(9) to hold in the face of (10), it is necessary that
Ap receive a larger contribution from the interval
0<v’<v than from the interval v<v’<e, A reso-
nance peak in ImAV! at some v’ <v is ideally
suited for this puvpose. In contrast, a monotonic
growth of ImA ™! from threshold to a region sub-
stantially above v would not render A,(v) negative,
and hence would not preserve unitarity.

The preceding remarks are well illustrated by
the model of Kang and Lee,'° who published suf-
ficient information for one to compute their 4;.
Kang and Lee represent the left cut by a few poles,
and determine the pole parameters by requiring
the solution of elastic N/D equations to contain a
p resonance and to have the scattering length a,
=0.038 predicted by Weinberg.’* Upon computing
their A}, one finds that A, is negalive between
threshold and 850 MeV, but becomes positive and
grows monotonically to exceed 0.55 above 1.4 GeV
and to exceed 1.1 above 2.0 GeV. Hence unitarity
demands that Az <0 above 1.4 GeV and that Ay
<-0.6 above 2.0 GeV. This requires a resonance
below 1.4 GeV, and the details of the model are
such that a broad p (I'>300 MeV) occurs at 770
MeV.

The model of Kang and Lee is severely incon-
sistent with the sum rules (5) [and (7)], as has
been discussed previously.!* The point I wish to
make here is that the model of Kang and Lee gen-
erates a p nof because A is large in the p region
(it vanishes at 850 MeV), but rather because A,
grows large al substantially higher enevgies.

In connection with the preceding remarks, it is
well to remember that N/D phase shifts (without
Castillejo- Dalitz-Dyson or bound-state poles) tend
asymptotically to zero (Levinson’s theorem).
Hence any phase shift which rises through 90° will
eventually fall back through 90°, giving rise to a
second peak in Im(N/D). This second peak has no
physical analog, since strong-interaction phase
shifts do not fall back to zero. To whatever ex-
tent this second peak in Im(N/D) comprises an
important singularity, the physical interpretation
of an N/D calculation is problematic. In the mod-
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el of Kang and Lee, the two peaks are closely
spaced and the dip between them is shallow. Hence
the two peaks are nearly merged into one, so that
Im(N/D) bears an approximate resemblance to the
physical ImA @1, At the same time, Re(N/D) has
an unphysical behavior just above the resonance.
We shall later describe an N/D model for A1 in
which the two peaks are quite distinct and widely
separated, but we shall find the second peak to
play the dominant role in preserving unitarity
over most of the region where the inequality (10)
is satisfied. The model to be described has a p
resonance in excellent agreement with experiment,
but is quite unphysical because of the crucial role
played by the second peak.

With regard to the relative importance of differ-
ent order moments of the distant left cut, Eq. (8)
indicates that only the low-order moments give
appreciable contributions to A, in the low-energy
region. Resonance genevation depends critically,

'l?owever, on the behavioy of A, at energies well
above the resonance. The shape of any resonance
also depends critically on the behavior of A at
these higher energies. It is thervefore essential
that high-ovder moments have plausible values
before one can claim a successful genevation of
the p. Reliable estimates for high-order moments
may easily be computed, for we have seen that
high-order (z>4) moments are determined to
good precision by low-energy data (primarily by
the p resonance).

V. THE MODEL OF DILLEY

Dilley has developed and used a method intro-
duced by Balazs,'®* wherein one determines the
distant left cut of A* by requiring agreement for
—1<sv<0 between N/D and A, [where Ay, de-
notes the Froissart-Gribov A ! given by Eq. (1)].
Agg is evaluated in terms of experimentally based
absorptive parts, with the goal of obtaining the
physically correct A®t, The bias inherent to this
method for selecting a distant left cut will be made
clear in the following discussion.

Let us suppose that physically correct absorp-
tive parts have been used in the evaluation of Ay,
so that A agrees precisely (in its domain of
validity) with the physical A*>'. Suppose also that
D has no zeros on the physical sheet (i.e., no
ghost or bound-state poles in N/D), so that N/D
has the same domain of analyticity as A (i.e.,
only right and left cuts). If is then rigorously true
(by analytic continuation) that agreement between
A and N/D for -1 <v<0 implies agreement be-
tween N/D and the physical AWt over the entive
complex v plane. In particular, N/D and A4
must have identical discontinuities across their
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respective cuts, so that N/D must contain a p
resonance identical to the physical p.

The preceding paragraph suggests that the gap-
matching method is strongly biased toward gener-
ating an output p, provided only that the input ab-
sorptive parts used in evaluating A, have led to
a good approximation for the physical AV, In
the following paragraphs, we shall analyze this
bias in quantitative detail.

Let us decompose A, into a sum of terms Ay,
and Ay coming from the distant and nearby parts
of the left cut, respectively:

AL(V)=iT:< [;9 dV'+[jdw>%§_(§)Q

=SALL (V) + Ay (V).

We are concerned here with the interval
~1sv<0, over which the power series (8) is
valid for Ay;. Using the moments given in Table
I, we have

ADL(V)35.32><10'31/+ 2.8 X 10™412 (i1)

within 1% for |v|<1.

The function Ay is readily computed, since Eq.
(6) yields ImA ! for —~9<v<_1. The result turns
out to be quite small because of a cancellation:
ImA @1 is negative for —9 <v<-5.86, but positive
for -5.86<v<-1. A power series for Ay, con-
verges for |v|<1, but the convergence is rather
slow. We find that

App()=9X107°v - 1.27 X 10732
+7.5X10™2 - 4,0 x 1074 (12)

within 3% for |v|<0.5, and within 26% for |v|<1
[Eq. (12) yields Ay (-1)=-2.51 X103, while the
true value is -3.39 x 107%].

Next we consider the term Ay arising from the
right cut. Although A has a branch point at v=0,
the near part of the cut is weak, and A, can be
approximated near threshold by a polynomial:

Ag(v)=3.35 1072y + 4.9 X 10732 (13)

within 0.7% for —1<v<0. Ay is of course strongly
dominated by the p contribution. We note in pass-
ing that Eqgs. (11), (12), and (13) yield a value of
0.039 for the P-wave scattering length, in good
agreement with Weinberg’s current-algebra pre-
diction.!!

Since the ratio N/D has the same analytic struc-
ture as A1, it can be regarded as a sum of three
terms analogous to our decomposition of A®)1;

N/D=Ap +Ay. +Ag, (14)

where the input Ay, is typically chosen on the
basis of Eq. (6), and the input Ay, is chosen by
some other method. The gap-matching method
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consists of varying Ay until Ay, and the output
Ay satisfy

Ap +Ag=Agg-Ayy. (15)

The crucial point of this section is that the phy-
sical Ay is very much larger (six times larger)
than the physical Ay, for -1 <v<0. Hence in the
gap-matching method, it is much move important
for N/D to have an output p than for the distant
left cut to be correct.

To illustrate this bias in the gap-matching meth-
od, we consider the following approximation in the
gap for the resonance-dominated A ®1:

AV ) =4 (v) (162)

> (’”Zr ,,) uT(:TV.T,,j (16b)

with m,=5.07 (i.e., 770 MeV) and T',=1.09 (i.e.,
150 MeV). Proceeding with our illustration, we
use a one-pole approximation for the left cut of
N, and vary the pole position and residue until
agreement is maximized between N/D and the
AWML of Eq. (16b), for —1sv<0. If we interpret
“maximum agreement” in terms of minimizing
the integral

0 N/D_A(l)l 2
Azzfldu[———-A—mT— )

then the pole in N is uniquely determined, and
A ;. has the quite satisfactory value A2
=8.2%x107%, The resulting N/D has an excellent
output p, with m,="768 MeV and I',=155 MeV.

The phase shift even reaches a maximum value of
163° near 2 GeV, before beginning a slow descent
back through 90° down to zero at v==. The calcu-
lation is highly successful in producing a p in
agreement with experiment, but this cannot be ve-
gavded as evidence that the p in Eq. (16b) is gen-
evated by exchange forces, because the amplitude
(16b) has no left-hand cut. The “success” of this
N/D calculation is mearly evidence that the gap-
matching method is strongly biased in favor of
generating ‘a p, vegardless of whether the p in the
amplitude being matched is generated by forces in

TABLE II. Contributions to left- and right-hand sides
of sum rules (7) in Dilley’s model. Numerical data have
been deduced from Table V of Ref. 2.

n Left-hand side Right-hand side
2 0.017 0.035

3 —0.0008 —0.0002

4 0.00005 -0.00010

the 77 channel. :

Details of the preceding N/D calculation are
rather interesting. - The pole in N corresponds'*
to ImN =ad(v-7), with a=5.28x 10*2 and 7=-"T.12
x 10%. The resulting left-hand cut in N/D is given
by Im(N/D)=b6(v - D), with b="7.02 x 10”. Since
N/D satisfies a dispersion relation identical in
form to Eq. (2), we conclude that

(N/D)L=7T__V(;;V:_VS (17a)
=4,4%X10"y, (17p)

where the approximation (17b) is valid for |v |

< 10%. 1t follows that (N/D),, is less than 0.01 for
M, <41 GeV. Hence (N/D), is miniscule through-
out the range of center-of-mass energies spanned
by existing accelerators. For v>1.35X10° (i.e.,
M,,.>320 GeV), however, the inequality (10) is
satisfied, and the discussion of Sec. IV implies
that N/D must have a large right-hand cut over
some region below 320 GeV. In addition to the p
peak at 768 MeV, we find a second peak of enor-
mous width, corresponding to a slow descent of
the phase shift back down through 90°. This sec-
ond peak has half-maxima at 160 GeV and 3500
GeV, with the 90° point at 740 GeV. It is clearly
this second peak in Im(N/D) which plays the dom-
inant role in preserving unitarity throughout most
of the region where the inequality (10) is satisfied.
More specifically, the vanishing of N/D at infinity
implies that ’

” Im(N/D) '

; (18)

lim (N/D) = 1 f d

Vv —>x Tr 0
Equation (17a) implies a value of 3.14 for the left-
hand side of Eq. (18), while the p peak contributes
only 0.3 to the right-hand side of Eq. (18). The
balance of 2.8 comes from the second, unphysical
peak in Im(N/D). Evidently this N/D solution bears
no fundamental relationship to the physical 77 P
wave, despite the beautiful p resonance contained
within it. :

Having displayed the bias inherent to the gap-

matching method, we turn now to a comparison of
Dilley’s model with the sum rules (7). In practice,
Dilley used an input p with a width of 115 MeV, and
his favored solution has an output p with a width of
168 MeV. Since his input p and output p have
nearly the same mass, the 46% discrepancy in
widths should be reflected in large percentage
discrepancies between the left- and right-hand
sides of the sum rules (7). Table II displays the
contributions of Dilley’s input absorptive parts to
these sum rules for =2, 3, and 4 (Dilley does
not provide enough information in Ref. 2 for one
to evaluate the sum rules with n=5). Forn=2,
the left- and right-hand sides disagree by a factor
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of 2. Forn=3, the left- and right-hand sides dis-
agree by a factor of 4. For n=4, the left- and
right-hand sides disagree in sign. These large
violations of the sum rules (7) imply the Dilley’s
model for the distant left cut is highly unphysical,
and tend to confirm our conjecture that Dilley’s
selection procedure obtains agreement between
N/D and Ay by producing an output p with rea-
sonable mass and width, af the cost of large errors
in the distant left cut.

We noted earlier that A 5 must agree with the
physical A®! in order for the gap-matching method
to assure an output p in N/D. This explains the
fact that Dilley’s “best” results were obtained when
he modified his result for A, with correction
terms which improved crossing symmetry, be-
fore requiring agreement of N/D with Ap,. This
also explains why, in earlier work,'® Gibbons and
Dilley only obtained an output p when high-mass
resonances (f, and g) were included in the com-
putation of Ag;. Through duality, these resonances
mimic Reggeized p exchange, which is required by
crossing symmetry.

The input absorptive parts used in this paper lead
to agreement between Ay and (A, +Ap) within 1.3%
for -1<v< 0, when Ay, is computed from Egs. (7)
and (8), and Ay, is computed from Eq. (6). Hence
the absorptive parts used here are highly con-
sistent with crossing symmetry.

It is conceivable that if one were to include a
large number of adjustable parameters in a model
for the left cut, then one could satisfy some

smaller number of sum rules and still have enough
adjustable parameters to obtain an output p in rea-
sonable agreement with experiment. Even if this
were done, however, it would merely show that a
finite number of constraints leaves freedom which
permits dut does not imply a generation of the p.

In order for a generation of the p to be implied
by analyticity, unitarity, and crossing symmetry,
one would have to include only as many degrees of
freedom in the left cut as are constrained by sum
rules (and/or by other unbiased conditions), and
then generate a p for plausible values of the input
absorptive parts. This has never been done. Even
if it were achieved at some future time, the in-
terpretation would be problematic, because of the
fact stressed earlier that N/D phase shifts tend
asymptotically to zero, giving rise to a second,
unphysical peak in Im(N/D).

VI. CONCLUSIONS

We have seen that the gap-matching method is
strongly biased in favor of generating a p, and
that Dilley’s model is sevérely inconsistent with
the sum rules (7). Hence Dilley’s model does not
comprise evidence that the p is generated by forces
in the 77 channel. Furthermore, numerous suc-
cesses of the quark model suggest that low-lying
resonances like the p are primarily diquark sys-
tems,® rather than dimeson systems. Hence it
seems unlikely that the p resonance is generated
by forces in the 77 channel.

APPENDIX A

Comparison of Eqs. (4), (6), and (7) leads to the following formulas:

4v - 23 5-v 8v-37

(0 _ ) - ) _

F=wygr o T = g6ty 4 = 590490
1 818 2

(1) _ (1) _

F{O= s (4u_123+ > o e
1 826 1

) dnie @
Fi"= 198830 (8” 201+ ) = 5557305 <
per_ 10/2v 323 1277 1813) 80 | (v+1

2 "W\ 3 T T tTE ) T 9

. 10 / v 71 203 1163> 10
Fl=eaee e+ — ——— + -

3 T2187\"6 6 ) TPl
per__ 10 4v 529 1321 5347)

1 " 196830 6
per. 10 ( v 316 2929 1024>

5 ~ 531441\ 3~ 15 ~ 10v

1 . v+l ]
Gz—wlm[j‘(u 1) —r—A( ,

; (
2187

mA(l)l

44 - 10v
~ 7971615 °

% 27--1——8> R
14

10v+ 240_31{1) ,

10 (121/ 37+ §+ 13),

O

ImA @)

’
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__ 1 1 P el ] ImA W1 ()
GS" 3(V+1)3 Im[‘T(V91)+—*Da—A(V,1) ——VS-—-,

__ 1 [ . @us1)@P+2041) L J ImA W1 (y)
Cazgpr W LT D+ v A, - & T, 142/ | - 2

1

Qv+ 1)(*+ 208+ 42+3v+ 1)

v+1

GS= WIm[—T‘(V,1)+ 5

8 cosf

V5

1 1 1
A, )+1 THv,1+2/v) - =5

y 9T (v, cosh) ) ] ImA ®1(y)
1+2/v

APPENDIX B

From threshold to 0.6 GeV, we use phase shifts
based on a comparison between K, data and a
rigorous representation for 77 amplitudes.'® More
specifically, we assume that

16.4
0 _
QCOtéo-— S_——(ﬁg - 0.36 , (Bl)
—45,
Q C0t6(2)= -S—_—§-§GZ - 0.97 , (BZ)
Q cotd} = SQLZ- - 2.79-0.0262s . (B3)
where

QE(1—4/S)1/2,

Equation (B1) corresponds to a scattering length
a,=0.26, with 6J=43° at 0.5 GeV. Equation (B2)
corresponds to a,=-0.041, with =-9° at 0.5
GeV. Equation (B3) corresponds to a, =0.040, with
m,=T70 MeV, and I =146 MeV.!* We neglect ab-
sorptive parts with 7> 2 below 0.6 GeV.

Between 0.6 and 1.9 GeV, we use the I=0 and
I=1 phase shifts and elasticities of Hyams ef al.,'”
and the I=2 phase shifts and elasticities of Durusoy
et al.'® (The p resonance of Ref. 17 has a mass of
778 MeV and a width of 152 MeV.) We neglect
absorptive parts with /= 4 below 1.9 GeV.

Above 1.9 GeV, we use Regge theory, and assume
that

ImTO=yp(¢)(s/3)*P D + y,(t)(s/3)
ImT* =y, (t)(s/3)%®
Im7?=0,
where
t=_3(s—-4)(1- cosb),

and the subscripts P, f, and p denote Pomeron,
fo, and p exchange, respectively. The scale fac-
tor § is chosen to be 1 GeV?.

We need Im7° only as a contribution to ImA!? in
the forward direction (=0). An asymptotic total
cross section of 17 mb (Ref. 19) is incorporated by
assuming that

yp(0)=1.34,

ap(0)=1.
We use p-f, exchange degeneracy to write

af(t) = ap(t) ’

vet)=3v,(0).
Assuming that
a,(t)=0.50+0.90(t/3),

a study of nm charge-exchange data above 1 GeV
indicates that*

v,(t)=0.67+1.78(¢/3)

+0.41(¢/3)% - 0.17(¢/35)3

for -1.0 GeV?<¢<0.1 GeV2.

We also need the value of ImA ! above 1.9 GeV.
In the case of total absorption (7} =0), ImA“*
would equal 0.5. Our high-energy integrals begin
at 1.9 GeV, however, where absorption is quite
incomplete.)” We therefore assume the effective
value

ImAW1=0,25

above 1.9 GeV.

The preceding absorptive parts represent our
favored values. Uncertainties in the S-wave con-
tributions to the sum rules (7) may be generously
estimated at 30%. The P-wave contributions are
strongly dominated by the p resonance, whose
width is uncertain by about 10%.%° The D, con-
tributions are dominated by the f, resonance,
whose 77 partial width is uncertain by about 20%.2°
The D, contributions are negligible, so an estimate
of their uncertainties would be superfluous. The
F-wave contributions are dominated by the g reso-
nance, whose 77 partial width is uncertain by
about 25%.%°

For the high-energy contributions, we note that
vp(0) is uncertain by about 20%.'° Pomeron ex-
change may not be wholly effective at an energy
as low as 1.9 GeV, however, so we estimate the
contributions of Im7%; to be uncertain by 30%.
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Reggeized p exchange appears to be effective (via
duality) above 1 GeV,* so we estimate the con-
tributions of ImT}; to have the same uncertainty
as y,, namely 15%.* Finally, we estimate the
uncertainty in contributions of ImA$! to be 50%.

The preceding uncertainties are statistically un-
correlated, so by a routine analysis we estimate
the uncertainties in the four “total” values in the
bottom row of Table I to be 29%, 33%, 18%, and
15%, respectively.

*This research was supported in part by the P.S.C.-
B.H.E. Research Award Program of C.U.N.Y.
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